
 Parallelism and the Memory Hierarchy:
Redundant Arrays of Inexpensive Disks

Amdahl’s law in Chapter 1 reminds us that neglecting I/O in this parallel revolution
is foolhardy. A simple example demonstrates this.

Impact of I/O on System Performance

Suppose we have a benchmark that executes in 100 seconds of elapsed time, of
which 90 seconds is CPU time and the rest is I/O time. Suppose the number
of processors doubles every two years, but the processors remain at the same
speed, and I/O time doesn’t improve. How much faster will our program run
at the end of six years?

We know that

Elapsed time CPU time I/O time
I/O time

I/O time s

� �
� �
�

100 90
10 eeconds

Th e new CPU times and the resulting elapsed times are computed in the
following table.

After n years CPU time I/O time Elapsed time % I/O time

0 years 90 seconds 10 seconds 100 seconds 10%

2 years 90

2
45� seconds

10 seconds 55 seconds 18%

4 years 45

2
23� seconds

10 seconds 33 seconds 31%

6 years 23

2
11� seconds

10 seconds 21 seconds 47%

Th e improvement in CPU performance aft er six years is

90
11

8�

EXAMPLE

ANSWER

5.11

 5.11 Parallelism and the Memory Hierarchy: Redundant Arrays of Inexpensive Disks 5.11-3

However, the improvement in elapsed time is only

100
21

4 7� .

and the I/O time has increased from 10% to 47% of the elapsed time.

Hence, the parallel revolution needs to come to I/O as well as to computation, or
the eff ort spent in parallelizing could be squandered whenever programs do I/O,
which they all must do.

Accelerating I/O performance was the original motivation of disk arrays. In
the late 1980s, the high performance storage of choice was large, expensive disks.
Th e argument was that by replacing a few large disks with many small disks,
performance would improve because there would be more read heads. Th is shift is
a good match for multiple processors as well, since many read/write heads mean
the storage system could support many more independent accesses as well as large
transfers spread across many disks. Th at is, you could get both high I/Os per second
and high data transfer rates. In addition to higher performance, there could be
advantages in cost, power, and fl oor space, since smaller disks are generally more
effi cient per gigabyte than larger disks.

Th e fl aw in the argument was that disk arrays could make reliability much
worse. Th ese smaller, inexpensive drives had lower MTTF ratings than the large
drives, but more importantly, by replacing a single drive with, say, 50 small drives,
the failure rate would go up by at least a factor of 50.

Th e solution was to add redundancy so that the system could cope with disk
failures without losing information. By having many small disks, the cost of extra
redundancy to improve dependability is small, relative to the solutions for a few
large disks. Th us, dependability was more aff ordable if you constructed a redundant
array of inexpensive disks. Th is observation led to its name: redundant arrays of
inexpensive disks, abbreviated RAID.

In retrospect, although its invention was motivated by performance,
dependability was the key reason for the widespread popularity of RAID. Th e
parallel revolution has resurfaced the original performance side of the argument
for RAID. Th e rest of this section surveys the options for dependability and their
impacts on cost and performance.

How much redundancy do you need? Do you need extra information to fi nd the
faults? Does it matter how you organize the data and the extra check information
on these disks? Th e paper that coined the term gave an evolutionary answer to
these questions, starting with the simplest but most expensive solution. Figure
5.11.1 shows the evolution and example cost in number of extra check disks. To
keep track of the evolution, the authors numbered the stages of RAID, and they are
still used today.

redundant arrays of
inexpensive disks
(RAID) An organization
of disks that uses an array
of small and inexpensive
disks so as to increase
both performance and
reliability.

5.11-4 5.11 Parallelism and the Memory Hierarchy: Redundant Arrays of Inexpensive Disks

No Redundancy (RAID 0)
Simply spreading data over multiple disks, called striping, automatically forces
accesses to several disks. Striping across a set of disks makes the collection appear
to soft ware as a single large disk, which simplifi es storage management. It also
improves performance for large accesses, since many disks can operate at once.
Video-editing systems, for example, oft en stripe their data and may not worry
about dependability as much as, say, databases.

RAID 0 is something of a misnomer, as there is no redundancy. However, RAID
levels are oft en left to the operator to set when creating a storage system, and RAID
0 is oft en listed as one of the options. Hence, the term RAID 0 has become widely
used.

striping Allocation of
logically sequential blocks
to separate disks to allow
higher performance than
a single disk can deliver.

FIGURE 5.11.1 RAID for an example of four data disks showing extra check disks per
RAID level and companies that use each level. Figures 5.11.2 and 5.11.3 explain the diff erence
between RAID 3, RAID 4, and RAID 5.

RAID 0
(No redundancy)
Widely used

Data disks

RAID 1
(Mirroring)
EMC, HP(Tandem), IBM

RAID 2
(Error detection and
correction code) Unused

RAID 3
(Bit-interleaved parity)
Storage concepts

RAID 4
(Block-interleaving parity)
Network appliance

RAID 5
(Distributed block-
interleaved parity)
Widely used

RAID 6
(P + Q redundancy)
Recently popular

Redundant check disks

 5.11 Parallelism and the Memory Hierarchy: Redundant Arrays of Inexpensive Disks 5.11-5

Mirroring (RAID 1)
Th is traditional scheme for tolerating disk failure, called mirroring or shadowing,
uses twice as many disks as does RAID 0. Whenever data is written to one disk,
that data is also written to a redundant disk, so that there are always two copies
of the information. If a disk fails, the system just goes to the “mirror” and reads
its contents to get the desired information. Mirroring is the most expensive RAID
solution, since it requires the most disks.

Error Detecting and Correcting Code (RAID 2)
RAID 2 borrows an error detection and correction scheme most oft en used for
memories (see Section 5.5). Since RAID 2 has fallen into disuse, we’ll not describe
it here.

Bit-Interleaved Parity (RAID 3)
Th e cost of higher availability can be reduced to 1/n, where n is the number of
disks in a protection group. Rather than have a complete copy of the original data
for each disk, we need only add enough redundant information to restore the lost
information on a failure. Reads or writes go to all disks in the group, with one extra
disk to hold the check information in case there is a failure. RAID 3 is popular in
applications with large data sets, such as multimedia and some scientifi c codes.

Parity is one such scheme. Readers unfamiliar with parity can think of the
redundant disk as having the sum of all the data in the other disks. When a disk fails,
then you subtract all the data in the good disks from the parity disk; the remaining
information must be the missing information. Parity is simply the sum modulo two.

Unlike RAID 1, many disks must be read to determine the missing data. Th e
assumption behind this technique is that taking longer to recover from failure but
spending less on redundant storage is a good tradeoff .

Block-Interleaved Parity (RAID 4)
RAID 4 uses the same ratio of data disks and check disks as RAID 3, but they
access data diff erently. Th e parity is stored as blocks and associated with a set of
data blocks.

In RAID 3, every access went to all disks. However, some applications prefer
smaller accesses, allowing independent accesses to occur in parallel. Th at is the
purpose of the RAID levels 4 to 7. Since error detection information in each sector
is checked on reads to see if the data is correct, such “small reads” to each disk can
occur independently as long as the minimum access is one sector. In the RAID
context, a small access goes to just one disk in a protection group while a large
access goes to all the disks in a protection group.

Writes are another matter. It would seem that each small write would demand
that all other disks be accessed to read the rest of the information needed to
recalculate the new parity, as in the left in Figure 5.11.2. A “small write” would

mirroring Writing
identical data to multiple
disks to increase data
availability.

protection group Th e
group of data disks
or blocks that share a
common check disk or
block.

5.11-6 5.11 Parallelism and the Memory Hierarchy: Redundant Arrays of Inexpensive Disks

FIGURE 5.11.2 Small write update on RAID 4. Th is optimization for small writes reduces the
number of disk accesses as well as the number of disks occupied. Th is fi gure assumes we have four blocks
of data and one block of parity. Th e naive RAID 4 parity calculation in the left of the fi gure reads blocks D1,
D2, and D3 before adding block D0? to calculate the new parity P?. (In case you were wondering, the new
data D0? comes directly from the CPU, so disks are not involved in reading it.) Th e RAID 4 shortcut on the
right reads the old value D0 and compares it to the new value D0? to see which bits will change. You then
read the old parity P and then change the corresponding bits to form P?. Th e logical function exclusive OR
does exactly what we want. Th is example replaces three disk reads (D1, D2, D3) and two disk writes (D0?, P?)
involving all the disks for two disk reads (D0, P) and two disk writes (D0?, P?), which involve just two disks.
Increasing the size of the parity group increases the savings of the shortcut. RAID 5 uses the same shortcut.

require reading the old data and old parity, adding the new information, and then
writing the new parity to the parity disk and the new data to the data disk.

Th e key insight to reduce this overhead is that parity is simply a sum of
information; by watching which bits change when we write the new information,
we need only change the corresponding bits on the parity disk. Th e right of Figure
5.11.2 shows the shortcut. We must read the old data from the disk being written,
compare old data to the new data to see which bits change, read the old parity,
change the corresponding bits, and then write the new data and new parity. Th us,
the small write involves four disk accesses to two disks instead of accessing all
disks. Th is organization is RAID 4.

Distributed Block-Interleaved Parity (RAID 5)
RAID 4 effi ciently supports a mixture of large reads, large writes, and small reads,
plus it allows small writes. One drawback to the system is that the parity disk must be
updated on every write, so the parity disk is the bottleneck for back-to-back writes.

To fi x the parity-write bottleneck, the parity information can be spread
throughout all the disks so that there is no single bottleneck for writes. Th e
distributed parity organization is RAID 5.

Figure 5.11.3 shows how data is distributed in RAID 4 versus RAID 5. As the
organization on the right shows, in RAID 5 the parity associated with each row of
data blocks is no longer restricted to a single disk. Th is organization allows multiple
writes to occur simultaneously as long as the parity blocks are not located on the
same disk. For example, a write to block 8 on the right must also access its parity

D0′ D0 D1 D2 D3 P

D0′ D1 D2 D3 P′

New Data 1. Read 2. Read 3. Read

4. Write 5. Write

XOR

D0′ D0 D1 D2 D3 P

D0′ D1 D2 D3 P′

+

New Data1. Read 2. Read

3. Write 4. Write

XOR

+ XOR

+

 5.11 Parallelism and the Memory Hierarchy: Redundant Arrays of Inexpensive Disks 5.11-7

block P2, thereby occupying the fi rst and third disks. A second write to block 5 on
the right, implying an update to its parity block P1, accesses the second and fourth
disks and thus could occur concurrently with the write to block 8. Th ose same
writes to the organization on the left result in changes to blocks P1 and P2, both on
the fi ft h disk, which is a bottleneck.

P � Q Redundancy (RAID 6)
Parity-based schemes protect against a single self-identifying failure. When a
single failure correction is not suffi cient, parity can be generalized to have a second
calculation over the data and another check disk of information. Th is second check
block allows recovery from a second failure. Th us, the storage overhead is twice
that of RAID 5. Th e small write shortcut of Figure 5.11.2 works as well, except now
there are six disk accesses instead of four to update both P and Q information.

RAID Summary
RAID 1 and RAID 5 are widely used in servers; one estimate is that 80% of disks in
servers are found in a RAID organization.

One weakness of the RAID systems is repair. First, to avoid making the data
unavailable during repair, the array must be designed to allow the failed disks to be
replaced without having to turn off the system. RAIDs have enough redundancy
to allow continuous operation, but hot-swapping disks place demands on the
physical and electrical design of the array and the disk interfaces. Second, another
failure could occur during repair, so the repair time aff ects the chances of losing
data: the longer the repair time, the greater the chances of another failure that will

hot-swapping Replacing
a hardware component
while the system is
running.

FIGURE 5.11.3 Block-interleaved parity (RAID 4) versus distributed block-interleaved
parity (RAID 5). By distributing parity blocks to all disks, some small writes can be performed in parallel.

0

4

8

12

16

20

. . .

1

5

9

13

17

21

. . .

2

6

10

14

18

22

. . .

3

7

11

15

19

23

. . .

P0

P1

P2

P3

P4

P5

. . .

0

4

8

12

P4

20

. . .

1

5

9

P3

16

21

. . .

2

6

P2

13

17

22

. . .

3

P1

10

14

18

23

. . .

P0

7

11

15

19

P5

. . .

RAID 4 RAID 5

5.11-8 5.11 Parallelism and the Memory Hierarchy: Redundant Arrays of Inexpensive Disks

lose data. Rather than having to wait for the operator to bring in a good disk, some
systems include standby spares so that the data can be reconstructed immediately
upon discovery of the failure. Th e operator can then replace the failed disks in a
more leisurely fashion. Note that a human operator ultimately determines which
disks to remove. Operators are only human, so they occasionally remove the good
disk instead of the broken disk, leading to an unrecoverable disk failure.

In addition to designing the RAID system for repair, there are questions about
how disk technology changes over time. Although disk manufacturers quote very
high MTTF for their products, those numbers are under nominal conditions.
If a particular disk array has been subject to temperature cycles due to, say, the
failure of the air conditioning system, or to shaking due to a poor rack design,
construction, or installation, the failure rates can be three to six times higher (see
the fallacy on page 479). Th e calculation of RAID reliability assumes independence
between disk failures, but disk failures could be correlated, because such damage
due to the environment would likely happen to all the disks in the array. Another
concern is that since disk bandwidth is growing more slowly than disk capacity, the
time to repair a disk in a RAID system is increasing, which in turn increases the
chances of a second failure. For example, a 3 TB disk could take almost nine hours
to read sequentially, assuming no interference. Given that the damaged RAID is
likely to continue to serve data, reconstruction could be stretched considerably.
Besides increasing that time, another concern is that reading much more data
during reconstruction means increasing the chance of an uncorrectable read
media failure, which would result in data loss. Other arguments for concern about
simultaneous multiple failures are the increasing number of disks in arrays and the
use of higher capacity disks.

Hence, these trends have led to a growing interest in protecting against more
than one failure, and so RAID 6 is increasingly being off ered as an option and being
used in the fi eld.

Which of the following are true about RAID levels 1, 3, 4, 5, and 6?

1. RAID systems rely on redundancy to achieve high availability.

2. RAID 1 (mirroring) has the highest check disk overhead.

3. For small writes, RAID 3 (bit-interleaved parity) has the worst throughput.

4. For large writes, RAID 3, 4, and 5 have the same throughput.

Elaboration: One issue is how mirroring interacts with striping. Suppose you had,
say, four disks’ worth of data to store and eight physical disks to use. Would you create
four pairs of disks—each organized as RAID 1—and then stripe data across the four
RAID 1 pairs? Alternatively, would you create two sets of four disks—each organized as
RAID 0—and then mirror writes to both RAID 0 sets? The RAID terminology has evolved
to call the former RAID 1 � 0 or RAID 10 (“striped mirrors”) and the latter RAID 0 � 1
or RAID 01 (“mirrored stripes”).

standby spares Reserve
hardware resources that
can immediately take
the place of a failed
component.

Check
Yourself

