
  Parallelism and the Memory Hierarchy: 
Redundant Arrays of Inexpensive Disks

Amdahl’s law in Chapter 1 reminds us that neglecting I/O in this parallel revolution 
is foolhardy. A simple example demonstrates this.

Impact of I/O on System Performance

Suppose we have a benchmark that executes in 100 seconds of elapsed time, of 
which 90 seconds is CPU time and the rest is I/O time. Suppose the number 
of processors doubles every two years, but the processors remain at the same 
speed, and I/O time doesn’t improve. How much faster will our program run 
at the end of six years?

We know that

Elapsed time CPU time I/O time
I/O time

I/O time  s

� �
� �
�

100 90
10 eeconds

Th e new CPU times and the resulting elapsed times are computed in the 
following table.

After n years CPU time I/O time Elapsed time % I/O time

0 years 90 seconds 10 seconds 100 seconds 10%

2 years 90

2
45�  seconds

10 seconds 55 seconds 18%

4 years 45

2
23�  seconds

10 seconds 33 seconds 31%

6 years 23

2
11�  seconds

10 seconds 21 seconds 47%

Th e improvement in CPU performance aft er six years is

90
11

8�
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However, the improvement in elapsed time is only

100
21

4 7� .

and the I/O time has increased from 10% to 47% of the elapsed time.

Hence, the parallel revolution needs to come to I/O as well as to computation, or 
the eff ort spent in parallelizing could be squandered whenever programs do I/O, 
which they all must do.

Accelerating I/O performance was the original motivation of disk arrays. In 
the late 1980s, the high performance storage of choice was large, expensive disks. 
Th e argument was that by replacing a few large disks with many small disks, 
performance would improve because there would be more read heads. Th is shift  is 
a good match for multiple processors as well, since many read/write heads mean 
the storage system could support many more independent accesses as well as large 
transfers spread across many disks. Th at is, you could get both high I/Os per second 
and high data transfer rates. In addition to higher performance, there could be 
advantages in cost, power, and fl oor space, since smaller disks are generally more 
effi  cient per gigabyte than larger disks.

Th e fl aw in the argument was that disk arrays could make reliability much 
worse. Th ese smaller, inexpensive drives had lower MTTF ratings than the large 
drives, but more importantly, by replacing a single drive with, say, 50 small drives, 
the failure rate would go up by at least a factor of 50.

Th e solution was to add redundancy so that the system could cope with disk 
failures without losing information. By having many small disks, the cost of extra 
redundancy to improve dependability is small, relative to the solutions for a few 
large disks. Th us, dependability was more aff ordable if you constructed a redundant 
array of inexpensive disks. Th is observation led to its name: redundant arrays of 
inexpensive disks, abbreviated RAID. 

In retrospect, although its invention was motivated by performance, 
dependability was the key reason for the widespread popularity of RAID. Th e 
parallel revolution has resurfaced the original performance side of the argument 
for RAID. Th e rest of this section surveys the options for dependability and their 
impacts on cost and performance.

How much redundancy do you need? Do you need extra information to fi nd the 
faults? Does it matter how you organize the data and the extra check information 
on these disks? Th e paper that coined the term gave an evolutionary answer to 
these questions, starting with the simplest but most expensive solution. Figure 
5.11.1 shows the evolution and example cost in number of extra check disks. To 
keep track of the evolution, the authors numbered the stages of RAID, and they are 
still used today.

redundant arrays of 
inexpensive disks 
(RAID) An organization 
of disks that uses an array 
of small and inexpensive 
disks so as to increase 
both performance and 
reliability.
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No Redundancy (RAID 0)
Simply spreading data over multiple disks, called striping, automatically forces 
accesses to several disks. Striping across a set of disks makes the collection appear 
to soft ware as a single large disk, which simplifi es storage management. It also 
improves performance for large accesses, since many disks can operate at once. 
Video-editing systems, for example, oft en stripe their data and may not worry 
about dependability as much as, say, databases.

RAID 0 is something of a misnomer, as there is no redundancy. However, RAID 
levels are oft en left  to the operator to set when creating a storage system, and RAID 
0 is oft en listed as one of the options. Hence, the term RAID 0 has become widely 
used.

striping Allocation of 
logically sequential blocks 
to separate disks to allow 
higher performance than 
a single disk can deliver.

FIGURE 5.11.1 RAID for an example of four data disks showing extra check disks per 
RAID level and companies that use each level. Figures 5.11.2 and 5.11.3 explain the diff erence 
between RAID 3, RAID 4, and RAID 5.

RAID 0
(No redundancy)
Widely used

Data disks

RAID 1
(Mirroring)
EMC, HP(Tandem), IBM

RAID 2
(Error detection and
correction code) Unused 

RAID 3
(Bit-interleaved parity)
Storage concepts

RAID 4
(Block-interleaving parity)
Network appliance

RAID 5
(Distributed block-
interleaved parity)
Widely used

RAID 6
(P + Q redundancy)
Recently popular

Redundant check disks
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Mirroring (RAID 1)
Th is traditional scheme for tolerating disk failure, called mirroring or shadowing, 
uses twice as many disks as does RAID 0. Whenever data is written to one disk, 
that data is also written to a redundant disk, so that there are always two copies 
of the information. If a disk fails, the system just goes to the “mirror” and reads 
its contents to get the desired information. Mirroring is the most expensive RAID 
solution, since it requires the most disks.

Error Detecting and Correcting Code (RAID 2)
RAID 2 borrows an error detection and correction scheme most oft en used for 
memories (see Section 5.5). Since RAID 2 has fallen into disuse, we’ll not describe 
it here.

Bit-Interleaved Parity (RAID 3)
Th e cost of higher availability can be reduced to 1/n, where n is the number of 
disks in a protection group. Rather than have a complete copy of the original data 
for each disk, we need only add enough redundant information to restore the lost 
information on a failure. Reads or writes go to all disks in the group, with one extra 
disk to hold the check information in case there is a failure. RAID 3 is popular in 
applications with large data sets, such as multimedia and some scientifi c codes.

Parity is one such scheme. Readers unfamiliar with parity can think of the 
redundant disk as having the sum of all the data in the other disks. When a disk fails, 
then you subtract all the data in the good disks from the parity disk; the remaining 
information must be the missing information. Parity is simply the sum modulo two.

Unlike RAID 1, many disks must be read to determine the missing data. Th e 
assumption behind this technique is that taking longer to recover from failure but 
spending less on redundant storage is a good tradeoff .

Block-Interleaved Parity (RAID 4)
RAID 4 uses the same ratio of data disks and check disks as RAID 3, but they 
access data diff erently. Th e parity is stored as blocks and associated with a set of 
data blocks.

In RAID 3, every access went to all disks. However, some applications prefer 
smaller accesses, allowing independent accesses to occur in parallel. Th at is the 
purpose of the RAID levels 4 to 7. Since error detection information in each sector 
is checked on reads to see if the data is correct, such “small reads” to each disk can 
occur independently as long as the minimum access is one sector. In the RAID 
context, a small access goes to just one disk in a protection group while a large 
access goes to all the disks in a protection group.

Writes are another matter. It would seem that each small write would demand 
that all other disks be accessed to read the rest of the information needed to 
recalculate the new parity, as in the left  in Figure 5.11.2. A “small write” would 

mirroring Writing 
identical data to multiple 
disks to increase data 
availability.

protection group Th e 
group of data disks 
or blocks that share a 
common check disk or 
block.
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FIGURE 5.11.2 Small write update on RAID 4. Th is optimization for small writes reduces the 
number of disk accesses as well as the number of disks occupied. Th is fi gure assumes we have four blocks 
of data and one block of parity. Th e naive RAID 4 parity calculation in the left  of the fi gure reads blocks D1, 
D2, and D3 before adding block D0? to calculate the new parity P?. (In case you were wondering, the new 
data D0? comes directly from the CPU, so disks are not involved in reading it.) Th e RAID 4 shortcut on the 
right reads the old value D0 and compares it to the new value D0? to see which bits will change. You then 
read the old parity P and then change the corresponding bits to form P?. Th e logical function exclusive OR 
does exactly what we want. Th is example replaces three disk reads (D1, D2, D3) and two disk writes (D0?, P?) 
involving all the disks for two disk reads (D0, P) and two disk writes (D0?, P?), which involve just two disks. 
Increasing the size of the parity group increases the savings of the shortcut. RAID 5 uses the same shortcut.

require reading the old data and old parity, adding the new information, and then 
writing the new parity to the parity disk and the new data to the data disk.

Th e key insight to reduce this overhead is that parity is simply a sum of 
information; by watching which bits change when we write the new information, 
we need only change the corresponding bits on the parity disk. Th e right of Figure 
5.11.2 shows the shortcut. We must read the old data from the disk being written, 
compare old data to the new data to see which bits change, read the old parity, 
change the corresponding bits, and then write the new data and new parity. Th us, 
the small write involves four disk accesses to two disks instead of accessing all 
disks. Th is organization is RAID 4.

Distributed Block-Interleaved Parity (RAID 5)
RAID 4 effi  ciently supports a mixture of large reads, large writes, and small reads, 
plus it allows small writes. One drawback to the system is that the parity disk must be 
updated on every write, so the parity disk is the bottleneck for back-to-back writes.

To fi x the parity-write bottleneck, the parity information can be spread 
throughout all the disks so that there is no single bottleneck for writes. Th e 
distributed parity organization is RAID 5.

Figure 5.11.3 shows how data is distributed in RAID 4 versus RAID 5. As the 
organization on the right shows, in RAID 5 the parity associated with each row of 
data blocks is no longer restricted to a single disk. Th is organization allows multiple 
writes to occur simultaneously as long as the parity blocks are not located on the 
same disk. For example, a write to block 8 on the right must also access its parity 

D0′ D0 D1 D2 D3 P

D0′ D1 D2 D3 P′

New Data 1. Read 2. Read 3. Read

4. Write 5. Write 

XOR

D0′ D0 D1 D2 D3 P

D0′ D1 D2 D3 P′

+

New Data1. Read 2. Read

3. Write 4. Write

XOR

+ XOR

+
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block P2, thereby occupying the fi rst and third disks. A second write to block 5 on 
the right, implying an update to its parity block P1, accesses the second and fourth 
disks and thus could occur concurrently with the write to block 8. Th ose same 
writes to the organization on the left  result in changes to blocks P1 and P2, both on 
the fi ft h disk, which is a bottleneck.

P � Q Redundancy (RAID 6)
Parity-based schemes protect against a single self-identifying failure. When a 
single failure correction is not suffi  cient, parity can be generalized to have a second 
calculation over the data and another check disk of information. Th is second check 
block allows recovery from a second failure. Th us, the storage overhead is twice 
that of RAID 5. Th e small write shortcut of Figure 5.11.2 works as well, except now 
there are six disk accesses instead of four to update both P and Q information.

RAID Summary
RAID 1 and RAID 5 are widely used in servers; one estimate is that 80% of disks in 
servers are found in a RAID organization.

One weakness of the RAID systems is repair. First, to avoid making the data 
unavailable during repair, the array must be designed to allow the failed disks to be 
replaced without having to turn off  the system. RAIDs have enough redundancy 
to allow continuous operation, but hot-swapping disks place demands on the 
physical and electrical design of the array and the disk interfaces. Second, another 
failure could occur during repair, so the repair time aff ects the chances of losing 
data: the longer the repair time, the greater the chances of another failure that will 

hot-swapping Replacing 
a hardware component 
while the system is 
running.

FIGURE 5.11.3 Block-interleaved parity (RAID 4) versus distributed block-interleaved 
parity (RAID 5). By distributing parity blocks to all disks, some small writes can be performed in parallel.
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lose data. Rather than having to wait for the operator to bring in a good disk, some 
systems include standby spares so that the data can be reconstructed immediately 
upon discovery of the failure. Th e operator can then replace the failed disks in a 
more leisurely fashion. Note that a human operator ultimately determines which 
disks to remove. Operators are only human, so they occasionally remove the good 
disk instead of the broken disk, leading to an unrecoverable disk failure.

In addition to designing the RAID system for repair, there are questions about 
how disk technology changes over time. Although disk manufacturers quote very 
high MTTF for their products, those numbers are under nominal conditions. 
If a particular disk array has been subject to temperature cycles due to, say, the 
failure of the air conditioning system, or to shaking due to a poor rack design, 
construction, or installation, the failure rates can be three to six times higher (see 
the fallacy on page 479). Th e calculation of RAID reliability assumes independence 
between disk failures, but disk failures could be correlated, because such damage 
due to the environment would likely happen to all the disks in the array. Another 
concern is that since disk bandwidth is growing more slowly than disk capacity, the 
time to repair a disk in a RAID system is increasing, which in turn increases the 
chances of a second failure. For example, a 3 TB disk could take almost nine hours 
to read sequentially, assuming no interference. Given that the damaged RAID is 
likely to continue to serve data, reconstruction could be stretched considerably. 
Besides increasing that time, another concern is that reading much more data 
during reconstruction means increasing the chance of an uncorrectable read 
media failure, which would result in data loss. Other arguments for concern about 
simultaneous multiple failures are the increasing number of disks in arrays and the 
use of higher capacity disks.

Hence, these trends have led to a growing interest in protecting against more 
than one failure, and so RAID 6 is increasingly being off ered as an option and being 
used in the fi eld.

Which of the following are true about RAID levels 1, 3, 4, 5, and 6?

1. RAID systems rely on redundancy to achieve high availability.

2. RAID 1 (mirroring) has the highest check disk overhead.

3. For small writes, RAID 3 (bit-interleaved parity) has the worst throughput.

4. For large writes, RAID 3, 4, and 5 have the same throughput.

Elaboration: One issue is how mirroring interacts with striping. Suppose you had, 
say, four disks’ worth of data to store and eight physical disks to use. Would you create 
four pairs of disks—each organized as RAID 1—and then stripe data across the four 
RAID 1 pairs? Alternatively, would you create two sets of four disks—each organized as 
RAID 0—and then mirror writes to both RAID 0 sets? The RAID terminology has evolved 
to call the former RAID 1 � 0 or RAID 10 (“striped mirrors”) and the latter RAID 0 � 1 
or RAID 01 (“mirrored stripes”).

standby spares Reserve 
hardware resources that 
can immediately take 
the place of a failed 
component.

Check 
Yourself




